2021 Summer School on Formal Methods s

Assignment Synchronous Programming

Frédéric MALLET
Frederic.Mallet@univ-cotedazur.fr

August 2021

Note : this assignment is designed for you to practice what you have learned.
Do whatever exercises you deem best suited for you. If you are confident that
you can do some without difficulties feel free to skip them.

1 Observer

We have seen that we can compare the equivalence of two programs with
tools like Lesar. To do that, you must build a synchronous observer, i.e., a node
that returns a Boolean (cf. obsl and obs2).

node obsl(a : bool)

returns (o : bool);
let

0 — a or not a;
tel

node obs2(a,b,c : bool)

returns (o : bool);
let

o =a or (band c);
tel

Use the following command to test it with the two examples above : lesar
<fic>.lus <node> -v -dbg -diag.

Exercise 1: BDD obsl

Focus on obsl. Build a BDD of the output o using the composition rules
seen during the lecture. What can you conclude ?

Exercise 2: BDD obs2

Focus now on 0bs2. Build a BDD of the output o using the composition rules
seen during the lecture. What can you conclude ?

ECNU, Shanghai 1 F. Mallet

mailto:Frederic.Mallet@univ-cotedazur.fr
Frederic.Mallet@univ-cotedazur.fr

2021 Summer School on Formal Methods s

2 1-bit addder

2.1 Half adder

The following Lustre node is called a half adder. It adds two inputs of 1-bit
and produces two outputs, one for the sum, the other one for the carry.

node half adder(a,b : bool) returns (sum,cy: bool);
let

sum = a xor b;
cy = a and b;
tel

Exercise 3: BDD half adder
Build the ROBDDs of the two outputs sum and cy.

2.2 Full adder

A full adder adds three inputs of one-bit and sums them up to produce two
outputs, the sum and the carry. We can build a full adder by combining two
half adders (hence the name). The following lustre nodes is a full adder (or is
it 7).

include "half adder.lus"

node full adder(a, b, cin : bool) returns (sum, cy : bool);
var s,cl,c2 : bool;
let
s,cl = half adder(a,b);
sum,c2 = half adder(s, cin);
cy = cl and c2;
tel

Exercise 4: BDD full adder 1

Build two ROBDDs for each output sum and cy by composing the ones you
have built at exercise [3| and by using the ITE rules seen during the lecture.

We can also attempt to build a full adder by writing equations supposed to rea-
lize our understanding of what a full adder is :

node addl (a, b, cin : bool)

returns (s,cout : bool);
let
S = a xor b xor cin;
cout = if a then b or cin

else b and cin;
tel

Exercise 5: BDD full adder 2
Build two ROBDDs for each output s and cout.

ECNU, Shanghai 2 F. Mallet

2021 Summer School on Formal Methods s

Exercise 6: Equivalence

Use the ROBDDs of both exercises [d and [5] to show that the two programs
are equivalent. If they are not equivalent, can you find the difference and find
the bug? If you do not find it by building the ROBDDs yourself, you can ask
Lustre and Lesar to do it for you.

3 Co-factors

We consider the two following Boolean functions :
— F(a,b,c) =(aAb)Vc
— Gl(a,b,c) = (aVb)A(bV —c)

Exercise 7: ROBDDs and cofactors

1. Build the RO-BDDs of functions F' and G ;
2. Build the co-factors Fy, Fy, F., Fa, Fy, F&;
3. Build the co-factors Gy, Gy, G., Ga, Gj, Ge.

4 ITE

We consider the following Boolean functions :
— Fl(a,c) ==(aNc)

— Gb,e)=bAc

— Hl1(a,b,c) = F(a,c) VG(b,c
— H2(a,b,c) = F(a,c) NG(b,c
— H3(a,b,c) = F(a,c) N =G(b,c)

~

Exercise 8: ITE

Use the ITE algorithm of the lecture to build RO-BDDs for F', G, H1, H2,
H3.

5 Rising Edge

The following node RisingEdge detects a rising edge on its input.

node RisingEdge (b : bool)

returns (edge : bool) ;
let

edge = false — b and not pre b ;
tel

Exercise 9: BDD edge

— Build a state machine of this node.
— Deduce from the state machine a truthtable for the output edge.
— Deduce from the truthtable a RO-BDD for edge.

ECNU, Shanghai 3 F. Mallet

e UCK™

2021 Summer School on Formal Methods " wmamvewesceence

Note : States can be encoded with Boolean variables, 2 states require one
Boolean variable, 4 states require 2 Boolean variables and so on. Encoding a
state machine (a Mealy machine) amounts to encoding a Boolean function F
that represents the outputs and another Boolean function G that represents the
next state.

— O = F(1,Q), the outputs is a Boolean function of the inputs I and the

state Q.
— QT = G(I,Q), the next state is a Boolean function of the inputs I and
the current state Q.

ECNU, Shanghai 4 F. Mallet

	Observer
	1-bit addder
	Half adder
	Full adder

	Co-factors
	ITE
	Rising Edge

