
2021 Summer School on Formal Methods

Assignment Synchronous Programming

Frédéric MALLET

Frederic.Mallet@univ-cotedazur.fr

August 2021

Note : this assignment is designed for you to practice what you have learned.
Do whatever exercises you deem best suited for you. If you are con�dent that
you can do some without di�culties feel free to skip them.

1 Observer

We have seen that we can compare the equivalence of two programs with
tools like Lesar. To do that, you must build a synchronous observer, i.e., a node
that returns a Boolean (cf. obs1 and obs2).

node obs1 (a : bool)
r e tu rn s (o : bool) ;
l e t

o = a or not a ;
t e l

node obs2 (a , b , c : bool)
r e tu rn s (o : bool) ;
l e t

o = a or (b and c) ;
t e l

Use the following command to test it with the two examples above : lesar
<fic>.lus <node> -v -dbg -diag.

Exercise 1: BDD obs1

Focus on obs1. Build a BDD of the output o using the composition rules
seen during the lecture. What can you conclude ?

Exercise 2: BDD obs2

Focus now on obs2. Build a BDD of the output o using the composition rules
seen during the lecture. What can you conclude ?

ECNU, Shanghai 1 F. Mallet

mailto:Frederic.Mallet@univ-cotedazur.fr
Frederic.Mallet@univ-cotedazur.fr

2021 Summer School on Formal Methods

2 1-bit addder

2.1 Half adder

The following Lustre node is called a half adder. It adds two inputs of 1-bit
and produces two outputs, one for the sum, the other one for the carry.

node half_adder (a ,b : bool) r e tu rn s (sum,cy : bool) ;
l e t

sum = a xor b ;
cy = a and b ;

t e l

Exercise 3: BDD half adder

Build the ROBDDs of the two outputs sum and cy.

2.2 Full adder

A full adder adds three inputs of one-bit and sums them up to produce two
outputs, the sum and the carry. We can build a full adder by combining two
half adders (hence the name). The following lustre nodes is a full adder (or is
it ?).

i n c lude "half_adder . l u s "

node fu l l_adder (a , b , c in : bool) r e tu rn s (sum, cy : bool) ;
var s , c 1 , c 2 : bool ;
l e t

s , c 1 = half_adder (a ,b) ;
sum,c2 = half_adder (s , c in) ;
cy = c1 and c2 ;

t e l

Exercise 4: BDD full adder 1

Build two ROBDDs for each output sum and cy by composing the ones you
have built at exercise 3 and by using the ITE rules seen during the lecture.

We can also attempt to build a full adder by writing equations supposed to rea-
lize our understanding of what a full adder is :

node add1 (a , b , c in : bool)
r e tu rn s (s , c ou t : bool) ;
l e t

s = a xor b xor c in ;
cout = i f a then b or c in

e l s e b and c in ;
t e l

Exercise 5: BDD full adder 2

Build two ROBDDs for each output s and cout.

ECNU, Shanghai 2 F. Mallet

2021 Summer School on Formal Methods

Exercise 6: Equivalence

Use the ROBDDs of both exercises 4 and 5 to show that the two programs
are equivalent. If they are not equivalent, can you �nd the di�erence and �nd
the bug ? If you do not �nd it by building the ROBDDs yourself, you can ask
Lustre and Lesar to do it for you.

3 Co-factors

We consider the two following Boolean functions :
� F (a, b, c) = (a ∧ b) ∨ c
� G(a, b, c) = (a ∨ b) ∧ (b ∨ ¬c)

Exercise 7: ROBDDs and cofactors

1. Build the RO-BDDs of functions F and G ;

2. Build the co-factors Fa, Fb, Fc, Fā, Fb̄, Fc̄ ;

3. Build the co-factors Ga, Gb, Gc, Gā, Gb̄, Gc̄.

4 ITE

We consider the following Boolean functions :
� F (a, c) = ¬(a ∧ c)
� G(b, c) = b ∧ c
� H1(a, b, c) = F (a, c) ∨G(b, c)
� H2(a, b, c) = F (a, c) ∧G(b, c)
� H3(a, b, c) = F (a, c) ∧ ¬G(b, c)

Exercise 8: ITE

Use the ITE algorithm of the lecture to build RO-BDDs for F , G, H1, H2,
H3.

5 Rising Edge

The following node RisingEdge detects a rising edge on its input.

node RisingEdge (b : bool)
r e tu rn s (edge : bool) ;

l e t
edge = fa l se → b and not pre b ;

t e l

Exercise 9: BDD edge

� Build a state machine of this node.
� Deduce from the state machine a truthtable for the output edge.
� Deduce from the truthtable a RO-BDD for edge.

ECNU, Shanghai 3 F. Mallet

2021 Summer School on Formal Methods

Note : States can be encoded with Boolean variables, 2 states require one
Boolean variable, 4 states require 2 Boolean variables and so on. Encoding a
state machine (a Mealy machine) amounts to encoding a Boolean function F
that represents the outputs and another Boolean function G that represents the
next state.

� O = F (I,Q), the outputs is a Boolean function of the inputs I and the
state Q.

� Q+ = G(I,Q), the next state is a Boolean function of the inputs I and
the current state Q.

ECNU, Shanghai 4 F. Mallet

	Observer
	1-bit addder
	Half adder
	Full adder

	Co-factors
	ITE
	Rising Edge

